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Synopsis 

A computational algorithm for the detailed simulation of a batch emulsion polymerization reactor 
is discussed. The model is applied to the polymerization of methyl methacrylate, and the model 
predictions are shown to be in good agreement with experimental data. Further computations show 
the influence of reactor operating conditions on the polymer product and the reactor perfor- 
mance. 

INTRODUCTION 

Emulsion polymerization in both batch and continuous reactors is a major 
processing step in the manufacture of polymer products such as paints, inks, 
coatings, adhesives, high-impact strength copolymers, etc. Current production 
by emulsion polymerization in the United States is on the order of ten billion 
pounds per year. In spite of this great economic importance, the detailed 
mechanistic and quantitative behavior of these reactors is not well understood. 
For this reason, there is a great deal of interest in developing reliable, predictive 
mathematical models for emulsion polymerization reactors. Since the early 
classical work of Harkins, Smith, and E ~ a r t , l - ~  there have been a number of 
models proposed. Detailed discussions of these models may be found in a 
number of comprehensive review papers.Gg 

Most recently? the available models were reviewed and their predictive 
abilities extensively compared with experimental data. In this same paper, a 
most comprehensive detailed mathematical model was formulated for emulsion 
polymerization reactors. This model, which includes all previous models as 
special cases, consisted of complex multivariate population balance equations 
coupled to material and energy balances for the reactor. Some brief preliminary 
computational results from the model have been presented,lOJ1 but the full 
predictive powers of the model have yet to be illustrated, and the computational 
techniques necessary to simulate the model have yet to be discussed in any detail. 
It is the purpose of the present paper to show how the complex modeling equa- 
tions presented in reference 9 may be efficiently solved, to demonstrate how the 
model parameters may be chosen for a specific polymerization reactor, and to 
present a detailed comparison of our model predictions with experimental 
data. 
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In the next section, we shall review our mathematical modeling equations for 
a batch free-radical emulsion polymerization reactor and discuss the model ap- 
proximations which can readily be made. Following this, we shall outline the 
numerical procedure which may be used for solving these complex coupled or- 
dinary differential and partial differential-integral equations. Finally, com- 
putational results from the model shall be presented for the case of the poly- 
merization of methyl methacrylate and compared with experimental data. 

THE MATHEMATICAL MODEL 

A very general form of the mathematical modeling equations was presented 
in reference 9 along with a detailed discussion of the meaning of each part of the 
model; thus, in this paper, we shall only review the model structure and formulate 
the necessary equations for treating a batch free-radical polymerization. The 
model consists of (i) particle size distribution balances, (ii) individual particle 
balances, (iii) aqueous phase balances, and (iv) general material and energy 
balances. These balances are coupled and consist of nonlinear ordinary dif- 
ferential equations (ODES) and population balance equations (PBEs). Although 
the model structure is very general and can simulate essentially all mechanisms 
of heterogeneous polymerization which have been proposed, we shall choose a 
more limited form for demonstration purposes. 

Initiation: 
The following free-radical kinetic scheme is assumed: 

Propagation: 

P, + M-P,+1 n I 1  
kP 

Chain Transfer: 

P , + T r - + P l + M ,  n l l  
kf t  

Termination: 
ktc 

P, + P, - M,+m n, m I 1 

P, + P, M, + M, n, m I 1 
ktd 

where the meaning of each of the symbols is given in the Appendix. 
The assumptions involved in formulating the model include the following: (i) 

There is excellent temperature control so that the system is isothermal. (ii) The 
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polymer particles are homogeneous with no internal structure. (iii) New particles 
may arise both from micelles and from aqueous phase oligomer precipitation. 
(iv) Polymer particles are stabilized both by emulsifier and by polymer chain 
ends on the particle surface. (v) Polymer particle agglomeration is important. 
(vi) The gel or Trommsdorf effect is present at high conversions. (vii) The 
monomer concentration in polymer particles depends on particle size, aqueous 
phase monomer concentration, etc. Under these assumptions, the very general 
modeling equations presented in references 9 and 12 may be simplified consid- 
erably. The various components of the model may be discussed under the fol- 
lowing headings. 

The Particle Size Distribution Balances 

The particle population balance equations include a total particle size distri- 
bution balance, F( V,t), which may be written in dimensionless form as 

where the meaning of the symbols is given in the appendix. It has been found 
computationally convenient also to consider separately two subsets of the total 
particle size distribution. The first, S( V,t ), represents explicitly the small 
particles reappearing in interval I11 due to the release of emulsifier from the chain 
end-stabilized particles: 

- -- 
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This subdistribution - _ -  of particles has a single growing radical always and disap- 
pears into F(  V,t)  after the second radical enters the particle. 

The particle size distribution balances also include a radical number distri- 
bution, f i  (V,t) ,  which may be written in dimensionless form: 
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where 
m 

C Ni(V,t) = 1. 
i = O  

The distribution of growing polymer chain lengths, fn(i ,  V) ,  may be determined 
from the dimensionless equations 
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where a reduced chain length distribution, g, (i, V), may be defined, 

g ,  (i, V,t) = 7, (i,P,?)/fi (P,i,t> (8) 

which has the property 

Finally, the distribution of dead polymer chain lengths, G,(i ,  V,t), arises 
from 

These complex partial differential-difference-integral population balance 
equations must be solved numerically, and suitable methods shall be discussed 
below. 

The Remaining Material Balances 

The material balances over the individual particles, in the aqueous phase, and 
in total are essentially as previously describedg and shall not be rewritten here. 
It is, however, appropriate to mention how the monomer concentration in the 
particles was determined. By balancing the free energy of mixing and the surface 
free energy for a particle, one obtains 
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which may be coupled to a total monomer balance 

to yield c $ ~  and [MIw in intervd I11 after the monomer droplets disappear. In 
the presence of monomer droplets (intervals I and 11), [MI, = [MI,,, and only 
eq. (11) is required. 

THE SIMULATION ALGORITHM 

In carrying out the numerical solution of the modeling equations, the aqueous 
phase balances, the particle balances, and the overall material balances are 
straightforward to handle; they are simply ordinary differential or algebraic 
equations. In contrast, the population balance equations are coupled multi- 
variate partial differential-difference-integro-differential equations, and their 
solution represents a very challenging numerical analysis problem. In addition, 
there are a wide variety of time scales in the reactor, ranging from -1 sec for 
free-radical species dynamics to several hours for polymerization to high mo- 
nomer conversion. Thus, the differential equations are stiff-posing another 
severe numerical problem. In this section, we shall outline our approach for 
overcoming these problems in order to produce a computer simulation, but refer 
the reader to reference 12 for more details. 

Solving the Population Balance Equations 

There are a large number of possible approaches to the solution of the popu- 
lation balance equationsl-lO; however, unless one chooses extremely carefully, 
the computing effort could become exorbitant. For our computations, we chose 
to calculate the leading moments of the distributions and then to represent the 
explicit differential distributions through a series expansion in the moments. 
This approach has several advantages. Firstly, the leading moments themselves 
provide the averages and covariances of the distributions and can be readily 
compared with experimental data on average particle size, number- and 
weight-average molecular weights, etc. Secondly, the moments reduce to or- 
dinary differential or algebraic equations which can be readily solved numeri- 
cally. 

The moment equations resulting from the total particle size distribution, 
F(v,?), and the two subdistributions, s(v,E) and U(v, i ) ,  are 



96 MIN AND RAY 

1 
2 

+ - C5 exp(-E*/kT) 

- C3 [ 2 g.(l,(V))] Eub--1/31 
n= 1 

- c5 exp(-E*/kT)Eu b-1/31Fu 1-1/31 

The fractional moments which arise in these equations are treated by ex- 
panding in terms of integer moments.12 

In a similar way, the moment equations for the normalized radical number 
distribution mi bl( V), for the growing polymer chainlength distributhn f n  b](i,V), 
and for moments of the dead polymer chain length distribution GiUn[O,O,jl are 
formulated.12 

In solving the moment equations coupled to the material balances for the 
particles and the aqueous phase, one has only ordinary differential and algebraic 
equations to solve. In the event that one wishes more detailed information in 
the form of the explicit differential distributions, one may then expand the 
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PARTICLE DIAMETER (a) 
Fig. 1. Particle size distributions for various initial initiator concentrations: (0) [I& = 18.03 

g/cc; (OA+) Gerrens’ experimental X 
data. 
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Fig. 2. Evolution of the conversion rate for various initiator concentrations: (0) [I& = 18.03 
g/cc; (1) starting point of interval X 

111; (-) model predictions. 
g/cc; (A)  [blW = 3.61 X g/cc; (0 )  [I& = 0.72 X 

moments at  any specific reaction time in a series expansion in a separate com- 
putation. Thus, the computational algorithm can be made quite efficient. 

There are several possible expansions one may use to represent the differential 
distribution. For example, if the distribution is close to a gamma distribution, 
then expansion in Laguerre polynomials would seem appropriate. On the other 
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Fig. 3. Monomer concentration in a polymer particle during intervals I and I1 ($ = 0.51): (-1 
5 dynedcm; (- - -) 8 dynes/cm; (- - -) 11 dynedcm. 

hand, if the distribution resembles a Gaussian distribution, then an expansion 
in Hermite polynomials would likely be more desirable. A discussion of these 
and other expansions may be found in reference 12. 

The number of moments required for a satisfactory representation of the 
differential distribution depends on the complexity of the shape. For a unimodal 
distribution, often only three or four moments are required for a good approxi- 
mation; however, for a bimodal distribution, 15 or more moments may be re- 
quired. For this reason, we chose to separate our bimodal particle size distri- 
butions into two unimodal distributions, S(V,t) and F(V,t)  - S(V,t), in our 
computations. In this way, a fewer number of moments are required for an 
adequate representation. 

- -- - _ _  - - _  

TABLE I 
Comparison of Predictions for Total Number of Particles and Molecular Weights with 

Experimental Data 

Predictions Experimental data13J5J6 
Operating conditions Total number of particles Total number 
[IOluJ x 104, c s  x 103, x 10-14, #/cc n,, x 10-4 of particles 

g/cc gJcc At t11-III At X, = 98% at X, = 98% X 10-14, #/cc Mu X lo-' 

18.03 5.81 3.40 3.69 4.90 3.32 2.56 
3.62 5.81 1.82 3.04 6.18 1.97 5.42 
0.72 5.81 0.86 1.80 6.81 1.34 7.03 
3.62 11.5 2.14 2.79 6.24 2.28 4.78 
3.62 2.91 1.24 1.24 5.81 1.38 5.84 
3.62 1.0 0.42 0.42 5.39 0.80 5.60 
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PARTICLE DIAMETER (A)  
Fig. 4. Monomer concentration in a particle during interval I11 ($ = 0.51, y = 8.0 dynedcm). 

Conversion: (-), 29%; (- -) 66.5%; (- - -) 78.6%; (- - -) 87.3%. 

The Quasi-Steady-State Approximation 

In order to overcome the stiffness in the modeling equations, the quasi- 
steady-state approximation (QSSA) was made wherever possible. The QSSA 
was applied to the growing polymer chain length distributions in both the 
aqueous and particle phase, to the radical number distributions in both phases, 
and to the dead polymer concentrations in the aqueous phases. The QSSA may 
be applied to the dead polymer concentration in the aqueous phase because the 
solubility of polymer in the aqueous phase is so low that the dynamics are ex- 
tremely fast. This approximation largely relieves the stiffness of the modeling 
equations, and they may be integrated without undue difficulties. 

The Computational Algorithm 

The computational algorithm consists of the following steps: (1) Set the initial 
conditions on all the variables. (2) Calcul%te the desired number of moments 
of the distributions F(V,t), U(V,l), S(V,t), f,,(i,V,?), and cn(i,v,i) for one time 
step. (3) - Solve -- for the aqueous-phase concentrations and the free-radical dis- 
tribution f i  (V,t ), using the quasi-steady-state-approximation. (4) Compute 
all the remaining material balances. ( 5 )  Return to (2) and iterate until the de- 
sired reaction time has elapsed. (6) Calculate the explicit differential distri- 
butions for F( V,tj), S( V,tj), U( V,t,), etc., based on moment expansions at each 
time t j  desired. 

This algorithm, which is discussed in great detail in reference 12, has been 
found to be quite efficient. As shall be demonstrated in the next section, it allows 
a ready comparison of model predictions with experimental data. 

- - - - - - - - - 

- - - - - - - - - 
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RADICAL NUMBER 

Fig. 5. Radical number distribution in the particle as a function of particle size. Particle diameter 
in A: (0) 294; (0) 737; ( 0 )  1003; (A] 1269. 

AN EXAMPLE SYSTEM 

In order to demonstrate the application of our model and computational al- 
gorithm, we have chosen to simulate the batch polymerization of methyl meth- 
acrylate (MMA). This monomer has a significant solubility in water, thus al- 
lowing aqueous-phase polymerization to play a role. In addition, the gel effect 
has a strong influence on the polymerization of MMA. Finally, there is a body 
of data for MMA available with which to compare our model predictions, and 
these data show that the observed particle size distributions can be quite broad 
and multimodal. For these reasons, the classical models have been showng to 
be inadequate for modeling MMA polymerization, and a more detailed model 
is needed. 

A wide variety of model simulations have been generated and are reported in 
reference 12; however, space limitations only allow a sampling of these to be re- 
ported here. 

The first task in the modeling of a specific system is, to determine the appro- 
priate system parameters. For our study of the MMA system, the kinetic pa- 
rameters, the dependence of the gel effect on monomer conversion, and the 
physical properties are all well known and were chosen from the literature. In 
fact, only two parameters had to be fit to the data. The first of these, H e f f m ,  
appearing in eqs. (11, (21, (31, and (7) represents the fraction of radicals entering 
micelles which do not desorb again. This parameter was chosen to be 0.23 for 
MMA by fitting our predictions for the total number of polymer particles with 
the data of Gerrens.I3 This is consistent with the value of Heffm = 0.1 used by 
Harada et a l l4  for the emulsion polymerization of styrene. 

The second parameter fitted to the experimental data was Ejj, the collision 
frequency factor for the rate of coalescence of polymer particles. The depen- 
dence of the rate of coalescence on surface properties, ionic strength, particle 
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RADICAL NUMBER 

Fig. 6. Molecular weight of growing polymer as a function of radical number for particles of 472-A 
diameter (80% conversion): (0) radical number density; ( 0 )  number average; (A)  weight aver- 
age. 

size, temperature, etc., has been determined the~ret ical ly .~J~ However, the 
collision frequency factor must be determined empirically. For our model of 
MMA, the value Eff = 10 was chosen based on a fit of Gerrens particle size dis- 
tribution data.13 

Having thus selected the appropriate model parameters, it  is interesting to 
compare our model predictions with the experimental data of Gerrens.13J5J6 
In Figure 1, one may see the final particle size distributions compared with the 
model predictions for a range of initiator concentrations. The total rate of po- 

RADICAL NUMBER 
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Fig. 7. Molecular weight of growing polymer as a function of radical number for particles of 1182-A 
diameter (80% conversion): (0) radical number density; ( 0 )  number average; (A) weight aver- 
age. 
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PARTICLE DIAMETER (a) 
Fig. 8. Molecular weight of growing polymer as a function of particle size at 4096 conversion (kfm 

= 0): (0) number average; (A) weight average. 

lymerization versus batch time is shown in Figure 2 for the same runs. The 
agreement of the model with the experimental data is extraordinarily good. The 
model predictions for molecular weight and total number of polymer particles 
are compared with the reported data in Table I for a range of initiator and 
emulsifier concentrations. The number of particles is predicted both a t  the 
beginning of interval I11 and at  98% conversion. The experimentally observed 
values agree quite well with the predictions. The agreement between predictions 
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Fig. 9. Molecular weight of growing polymer as a function of particle size at 70% conversion (k fm 
= 0): (0) number average; (A) weight average. 
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Fig. 10. Evolution of the particle size and free radical distributions. 

and measurements for the molecular weight is quite good, except at extremely 
high emulsifier and initiator concentrations. It is likely that unmodeled chain 
transfer is causing the experimental molecular weight to be lower than the pre- 
dictions in these cases. 

The ability of our model to predict the observed behavior of a batch MMA 
emulsion polymerization reactor has been demonstrated for reported data on 

TIME, min. 

Fig. ll._Evolution of the total number of particles (FUlo]), the number of singly impregnated 
particles (v”[Ol), and the average number of radicals per particle: (0 )  total particles; (0) singly 
impregnated particles; (A) average number of radicals per article. 
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PARTICLE DIAMETER ( 8 )  
Fig. 12. Particle size distributions for various emulsifier concentrations: (0) C, = 1.0 X 10-3 

g/cc; (A) C, = 2.9 x 10-3 g/cc; (+I C, = 5.8 x 10-3 g/cc; (0) C, = 11.6 x 10-3 g/cc. 

conversion, particle size distribution, total particle number, and molecular weight 
over a range of operating conditions. Now we shall present some predictions 
from this validated model in order to draw some general conclusions. 

The Individual Polymer Particle 

The influence of partizle size on the monomer concentration in a single particle 
may be calculated from eqs. (11) and (12). Typical results, shown in Figures 3 
and 4, indicate that in intervals I and 11, smaller particles have significantly lower 
monomer concentrations, but that in interval 111, the monomer concentration 
is nearly independent of particle size and is strongly conversion dependent. 
Increasing surface tension tends to decrease the particle monomer concentration 
somewhat. 

The distribution of the number of growing radicals in particles of a given size 
depends strongly on the particle size. Figure 5 shows that very small particles 
(-300 A) have principally 0, 1, or 2 radicals while a significant number of larger 
particles (-1200 A) have 12 or more radicals per particle. 

The molecular weight distribution in polymer particles of a given size depends 
both on the specific particle size and the number of radicals in the particle. As 
an illustration, Figure 6 shows that the molecular weight decreases sharply in 
a small 472-A particle as the number of growing radicals increases. In contrast, 
Figure 7 shows that for larger particles, the molecular weight dependence on 
radical number is much weaker. The influence of the particle size (and the 
concomitant effects of radical number and 'monomer concentration) on the 
molecular weight of the polymer is illustrated in Figures 8 and 9. The molecular 
weight of polymer formed at relatively low conversions is shown to be strongly 
dependent on particle size; however, the polymer formed a t  higher conversions 
has a molecular weight which is less dependent on particle size. 



COMPUTER SIMULATION OF REACTORS 105 

.2 o\ 
I I 1 
0 20 40 60 80 I( 

TIME, rnin 

Fig. 13. Evolution of conversion rate for various emulsifier concentrations: ( 0 )  C, = 11.5 x 10-3 
g/cc; (4) starting point of Interval III; (-) model g/CC; (0) c, = 2.91 X 

prediction at  each emulsifier concentration. 
g/cc; (A) c, = 1.0 X 

The higher molecular weight for small particles is due to two effects: (i) The 
smaller particles have small volumes and a small number of radicals, and chain 
growth is most strongly influenced by radical entry; in contrast, the larger par- 
ticles have a large volume and a larger number of radicals, and bulk termination 
kinetics plays a role in chain growth. (ii) Smaller particles have a lower monomer 
concentration and a stronger gel effect, thus increasing the molecular weight. 
The decreased dependence of molecular weight on particle size at  high conver- 
sions can be explained from Figure 4 where it is seen that the gel effect should 
be almost particle size independent at  high conversions. 

Our resultd2 also show that the dependence of molecular weight on the particle 
size depends strongly on the initiator concentration and the amount of chain 
transfer. For very small initiator concentrations or very high chain transfer rates, 
the polymer molecular weight is controlled by the chain transfer mechanism and 
is independent of the particle size. 

The Particle Distributions 

Having established the influence of operating conditions on the individual 
polymer particles, we shall now discuss a sampling of particle distributions which 
arise from the model. Figure 10 shows the evolution of the particle size and 
free-radical distributions with conversion. A t  10% conversion, the particles are 
fairly small, with essentially 0 or 1 radical per particle. By 40% conversion, the 
distribution has moved to a larger particle size, and a noticeable fraction of the 
particles have two radicals. When the conversion reaches 60'36, a second small 
particle peak is beginning due to new free emulsifier in interval 111, and some 
larger particles have three and four radicals. Finally, by 90% conversion, the 
small particle peak has grown in size and amplitude while the large particles have 
a rather broad free-radical distribution. 

The evolution of the total number of particles and the average number of 
radicals per particle, i, is illustrated in Figure 11. Initially, nearly all the particles 
are singly impregnated [distribution U( V, t ) ] ,  having exactly one radical per 
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PARTICLE DIAMETER (A)  
Fig. 14. Particle size distributions at  the beginning of interval I11 with varying ionic strength of 

the medium: (+) Cdt  = 0; (A) C d t  = 3.0 X mole/cc; (0) C8dt = 1.0 X lo-' mole/cc. 

particle. However, after a short period, the growing particles become multiply 
impregnated and t approaches 0.5, characteristic of small particles. Following 
this, the particles become larger, and the gel effect becomes important so that 
t increases above 1.0 but begins to level off as the secondary small particles 
[S(V,t)]  are formed at high conversions. Note that the total number of particles 
remains nearly constant after the initial period and agrees well with Greens' 
reported value. 

The Influence of Operating Conditions 

The influence on the reactor behavior of changing initiator concentration has 
been shown in Figures 1 and 2. In Figure 1, which shows the final particle size 
distribution as a function of initiator concentration, one may see that a large 
initiator concentration will cause rapid particle formation so that all the particles 
are formed almost simultaneously and will grow to a relatively narrow particle 
size distribution. Alternatively, a small initiator concentration causes slow and 
protracted particle formation, resulting in a much broader particle size distri- 
bution with relatively small numbers of larger particles. The conversion rate 
history shown in Figure 2 indicates that larger initiator concentrations will lead 
to higher rates of reaction, as might be expected. The rate of reaction increases 
sharply as the particles are formed, begins to decrease as the monomer droplets 
disappear, increases again as the gel effect plays a role, and finally decreases 
sharply. This latter decrease is likely due to the very low monomer concentration 
as well as to the propagation constant becoming diffusion limited. 

The effect of changing the emulsifier concentration may be seen in Figures 
12 and 13. The final particle size distributions as a function of emulsifier con- 
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Fig. 15. Comparison of three particle size distributions, each having the same volume average 

particle diameter. 

centration are shown in Figure 12. Very small emulsifier concentrations cause 
a small number of particles to be formed quickly, and these grow together to form 
an almost monodisperse size distribution. A very large emulsifier concentration, 
on the other hand, allows particle formation over a much larger time period and 
produces a very broad size distribution and a large number of particles. The 
influence of emulsifier concentration on the predicted conversion rate history 
is illustrated in Figure 13 and is compared with the experimental data of Ger- 
rens.13 Although the model is only in fair quantitative agreement with the data, 
the trends are predicted quite well. As one expects, increasing emulsifier con- 
centration causes the average rate of reaction to increase; however, during the 
early stages of reaction, the rate is higher for smaller emulsifier concentrations. 
This is due to the higher rate of propagation in the smaller number of larger 
particles present at  low emulsifier concentrations. 

The ionic strength of the polymerizing medium, which is influenced by the 
concentrations of initiator, emulsifier, chain transfer agents, and other ionic 
species, seems to have a strong influence on the rate of particle coalescence. This 
effect is illustrated in Figure 14, where increasing the concentration of an additive 
salt is predicted to strongly enhance the rate of coalescence, thus broadening the 
particle size distribution. 

CONCLUDING REMARKS 

In this paper we have presented some computational results from a very de- 
tailed and general model for heterogeneous polymerization reactors. The model 
was shown to provide very good agreement when compared with experimental 
data for the batch emulsion polymerization of methyl methacrylate and to allow 
many mechanistic questions to be explored quantitatively. The computing effort 
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TABLE I1 
Influence of Particle Size Distribution on Polymer Molecular Weight and Conversion Rate 

Polydis- Rp, 
Ni N2 di ,A  &,A an G w  persity %/min 

At 20% Conversion 
Case A 1.0 - 600 - 3.77 x 105 7.54 x 105 2.00 5.25 
CaseB 0.5 0.5 300 740 8.03 X 105 2.416 X lo6 3.008 5.06 
CaseC 0.87 0.13 498 951 4.60X lo5 9.82 X lo5 2.134 5.20 

At 80% Conversion 
CaseA 1.0 - 600 - 1.40 X 105 2.91 X 105 2.079 3.86 
CaseB 0.5 0.5 300 740 1.79 X 105 4.371 X 105 2.437 3.94 
CaseC 0.87 0.13 498 951 1.56 X 105 3.271 X 105 2.102 3.77 

required for the simulation of the modeling equations was modest and depended 
on the degree of detailed information required. As an indication, a simulation 
of the particle size, radical number, and molecular weight distributions coupled 
to the reactor material balances over the entire batch time typically required 
about 12 minutes on the CDC 6400 computer. 

There are a number of areas in which work is underway to expand and improve 
the capabilities of the model. We are working to improve the numerical methods 
for representing the differential particle distributions as well as developing ex- 
perimental procedures for better determination of the unknown model param- 
eters for mechanisms such as particle formation, radical desorption, particle 
coalescence, etc. At  the same time, we are applying the model to several example 
continuous emulsion polymerizations to determine how well the model predic- 
tions agree with experimental data. Such a continuous reactor model would be 
of great value in studying experimentally observed reactor oscillations and aid 
in the solution of continuous reactor control problems. 

One of the more interesting questions which such a detailed model can answer 
for the practitioner is, “what influence does the particle size distribution have 
on the properties of the polymer produced?” For the MMA system, one may 
immediately see that the rate of polymerization and molecular weight of the 
polymer produced depends strongly on the particle size (cf. Figs. 4 and 8) and 
thus is expected to be influenced by the shape of the particle size distribution. 
An illustration of this effect may be seen by considering three particle size dis- 
tributions having the same total number of particles and the same volume-av- 
erage particle size. Distribution A, shown in Figure 15a, is a unimodal distri- 
bution with a narrow peak a t  600 A. Distribution B, depicted in Figure 15b, is 
bimodal, with 50% of the particles grouped at  300 8, and 50% of the particles 
grouped at  740 A. Distribution C, depicted in Figure 15c, is also bimodal, with 
50% of the particle volume (87% of the particles) grouped at  498 A and 50% of 
the particle volume (13% of the particles) grouped at  951 A. Calculations were 
carried out at  20% total conversion (in interval 11) and at  80% total conversion 
(in interval 111) to determine the influence of the shape of the particle size dis- 
tribution. The results, tabulated in Table 11, show that in interval I11 (80% 
conversion), the molecular weight is slightly influenced by the shape of the 
particle size distribution. However, in interval I1 (20% conversion), the particle 
size distribution has a strong effect on the molecular weight and polydispersity. 
In both cases, there is a small effect on the rate of polymerization. These results 
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suggest that in systems without chain transfer control of molecular weight, the 
molecular weight of the polymer produced can be strongly influenced by the 
shape of the particle size distribution. 

No m e n c 1 at u r e 

= t k m p / k p ) ( d p / & )  (Na)2[Io]w (36d1/3(  VmI5I3 
= (kd/kp)(dp/dm)(Na)2[IOlw(2f)( VmP 
= ( k o / k p )  ( d p l d m )  tNa W m  ) 2 / 3  

= ( k  tc / 2 k p  1 ( d p / d m  1 
= ( k , d / 2 k , ) ( d p / d m )  

= ( k  c / k p  1 ( d p / d m  1 (Nu 1 ( m 0) ( v m  1 1’3 
= ( k m m / k p  1 ( d p / d m )  (Na >2[101w ( 3 6 ~ ) l ’ ~ (  Vm I5I3 
= @ p / ~ m ) W a )  [Iolw2(l/mo)( Vm) 
= ( k , c / 2 k p  ) t d p / d m  1 [ I O l w  2tNa ) (l/mo) ( v m  ) 
= (Na)(mo)(Vm) 
= CUm>[IOlw 
= (Na)(mo)(Vm) 
= ( d p / M ,  1 tNa 1 ( v m  ) 
= ( k f m / k p )  t d p / M , )  tNa) t Vm) 
= ( k f t / k p  1 ( d p / d m )  (Na)  ( v m  ) 1101 w 

= { ( h c  + b d ) / 2 k p j ( d p / d m )  

= gel effect coefficient, kt/kto 
= density of monomer, g/cm3 
= density of polymer, g/cm3 
= activation energy for coalescence, cal/mole 
= number of particles containing i radicals in a volume V to V 

= f i t  V, t )  dV/mo, dimensionless 
= number of radicals of chain length n in the number of parti- 

cles (per unit volume of emulsion) of size V to V + dV having 
i radicals, moles/cm3 emulsion 

= f n  ti ,  V , t )  dV/mo, dimensionless 
= j t h  moment of chain length in dimensionless trivariate 

growing polymer chain length distribution, ZE=l(n)jf, (i,V) 
(i,V) 
dV 

t ,  moles/cm3 emulsion 

+ d V at time t , moles/cm3 emulsion 

= number of polymer particles of a volume V to V + dV at time 

= F (  V,t) d Vlmo, dimensionless 
= j th  moment of dimensionless total particle size distribution, 

= number of radicals of chain length n in a particle of size V 
having i growing radicals, dimensionless 

= number of dead polymers of chain length n in the number of 
particles (per unit volume of emulsion) of size V to V + dV 
having i growing radicals, moles/cm3 emulsion 

J-;(V)V(v) dV 

= G n  (i, V, t )  dV/mo, dimensionless - Giun “W4Jl = j t h  moment of chain length n, zeroth moment of radical 
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number i, and zeroth moment of particle volume V in di- 
mensionless trivariate dead polymer chain length distribu- 
tion, 

fraction of radicals entering micelles which do not desorb 
again 
average number of radicals in particles having size B 
initiator 
initial initiator concentration in the aqueous phase 
[I]pl[I~]w dimensionless initiator concentration in the particle 
phase 
Boltzmann constant 
rate constant for particle coalescence = kc' Eff 
rate constant for initiator decomposition, l/hr 
rate constant for chain transfer to mdnomer, cm3/mole-hr 
rate constant for chain transfer to transfer agent, cm3/ 
mole-hr 
rate constant for monomer initiation, cm3/mole-hr 
rate constant for polymer propagation, cm3/mole-hr 
rate constant for termination by combination, cm3/mole- 
hr 
rate constant for radical entry into micelles 
rate constant for termination by disproportionation, cm3/ 
mole-hr 
number of micelles, moles/cm3 

ZTLJ so" z;=, (n).Gn(i,V) dV 

= dimensionless 
= initial number of micelles 
= monomer 
= [MI T/[Mo] T, dimensionless 
= monomer concentration in the aqueous phase, moles/cm3 
= [M]w/[Io]w, dimensionless 
= [M],/[Iolw, dimensionless monomer concentration in the 

= dead polymer of chain length n 
= initial total monomer concentration in emulsion, moles/cm3 

= chain length of oligomer in the aqueous phase 
= j th  moment of normalized radical number distribution, 

= [P],/[Io]w, dimensionless growing polymer concentration in 

= growing polymer of chain length n 
= [Pn]W/[Io]w, dimensionless concentration of growing polymer 

= dimensionless radius of a particle 
= radius of a micelle, 2.5 X cm 
= free radical 

aqueous phase in interval I and I1 

emulsion 

2;=0 (i)"(V) 

the aqueous phase 

having chain length n in the aqueous phase 
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= [ R ] , / [ I O ] ~ ,  dimensionless 
= number of small particles in interval I11 of a volume V to V 

+ d V, moles/cm3 emulsion 
= S (  V , t )  d V l m ,  dimensionless 
= j th  moment of dimensionless small particle size distribution, 

= time, hr 
= (kp /N , ) (dm/dp) ( l /Vm) t ,  dimensionless 
= chain transfer agent 
= [Tr],/[Iolw, dimensionless 
= number of singly impregnated particles of a volume V to V 

+ d V,  moles/cm3 emulsion 
= U( V, t )  dV/mo, dimensionless 
= j th  moment of dimensionless singly impregnated particle size 

distribution, Jt(V)ja(v) d v  
= dimensionless subvariable of particle size 
= molal volume of monomer, cm3/mole 
= dimensionless 
= volume of a micelle, cm3 
= vm/vm = 1 
= Vo/V,, dimensionless volume of precipitating oligomer 
= volume fraction of the aqueous phase in emulsion, cm3/ 

= surface tension, dynes/cm 
= Kronecker delta function, 1 for i = j ,  0 for i # j 
= - 6(V - Vm)Vm, dimensionless Dirac delta function, 1 for 

= monomer volume fraction in the particle of volume 
= monomer polymer interaction parameter, dimensionless 

Jt(vPs(v) d v  

cm3 

V = V m  andOforv  # Vm 
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